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ABSTRACT

In this study, the numerical solution of stagnation point flow over a stretching surface, generated by Newtonian heating in 
which the heat transfer from the surface is proportional to the local surface temperature is considered. The transformed 
boundary layer equations are solved numerically using the shooting method. Numerical solutions are obtained for the 
local heat transfer coefficient, the surface temperature and the temperature profiles. The features of the flow and heat 
transfer characteristics for various values of the Prandtl number, stretching parameter and conjugate parameter are 
analyzed and discussed. 
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ABSTRAK

Dalam kajian ini, penyelesaian berangka bagi masalah aliran titik genangan pada permukaan meregang yang dijanakan 
oleh pemanasan Newtonan, iaitu pemindahan haba daripada permukaan berkadar langsung dengan suhu permukaan 
setempat dipertimbangkan. Persamaan lapisan sempadan terjelma diselesaikan secara berangka dengan kaedah 
tembakan. Penyelesaian berangka diperoleh bagi pekali pemindahan haba setempat, suhu permukaan dan profil suhu. 
Ciri-ciri aliran dan pemindahan haba bagi pelbagai nilai nombor Prandtl, parameter regangan dan parameter konjugat 
dianalisis dan dibincangkan. 

Kata kunci: Aliran titik genangan; helaian meregang; pemanasan Newtonan; penyelesaian berangka 

INTRODUCTION

Problems related to convection boundary layer flows are 
important in engineering and industrial activities. Such 
flows are applied to manage thermal effects in many 
industrial outputs, for example in electronic devices, 
computer power supply and also in engine cooling system 
such as heatsink in car radiator. Sakiadis (1961) was the 
first to study the boundary layer flow on a continuous solid 
surface moving at constant speed. Due to entrainment of 
the ambient fluid, this boundary layer flow is quite different 
from Blasius flow past a flat plate. Sakiadis’s theoretical 
predictions for Newtonian fluids were later corroborated 
experimentally by Tsou et al. (1967). Flow of a viscous 
fluid past a stretching sheet is a classical problem in fluid 
dynamics. Crane (1970) was the first to study convection 
boundary layer flow over a stretching sheet. The heat 
and mass transfer on a stretching sheet with suction or 
blowing was investigated by Gupta and Gupta (1977). 
They considered an isothermal moving plate and obtained 
the temperature and concentration distributions. Chen 
and Char (1988) studied laminar boundary layer flow 
and heat transfer from a linearly stretching, continuous 
sheet subjected to suction or blowing. Two cases were 
considered; moving plate with prescribed wall temperature 
and heat flux. Ishak et al. (2007, 2008, 2009) studied the 
MHD stagnation point flow towards a stretching sheet, 

mixed convection towards vertical and continuosly 
stretching sheet and post stagnation-point towards vertical 
and linearly stretching sheet. This type of problem was 
then extended to viscous fluids, viscoelastic fluids or 
micropolar fluids by many investigators by considering 
the usually applied boundary conditions, either prescribed 
wall temperature or prescribed wall heat flux.
	O n the other hand, Merkin (1994) has shown that, 
in general, there are four common heating processes 
specifying the wall-to-ambient temperature distributions, 
namely, (1) constant or prescribed wall temperature; (2) 
constant or prescribed surface heat flux; (3) conjugate 
conditions, where heat is supplied through a bounding 
surface of finite thickness and finite heat capacity. The 
interface temperature is not known a priori but depends on 
the intrinsic properties of the system, namely the thermal 
conductivity of the fluid or solid; and (4) Newtonian 
heating, where the heat transfer rate from the bounding 
surface with a finite heat capacity is proportional to the 
local surface temperature and is usually termed conjugate 
convective flow.
	 Generally, in modeling the convection boundary 
layer flow, the boundary conditions that were usually 
applied are (1) and (2). However, the Newtonian heating 
condition, (4) has been used only quite recently by Lesnic 
et al. (2004); Merkin (1994) and Pop et al. (2000) to study 
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the free convection boundary layer flow over vertical and 
horizontal surfaces embedded in a porous medium. The 
asymptotic solution near the leading edge and the full 
numerical solution along the whole plate domain have been 
obtained numerically, whilst the asymptotic solution for 
downstream along the plate has been obtained analytically. 
Recently Salleh et al. (2009, 2010, 2011b) and Salleh and 
Nazar (2010) studied the forced convection boundary layer 
flow at a forward stagnation point with Newtonian heating 
as well as the forced and free convection boundary layer 
flow over a horizontal circular cylinder with Newtonian 
heating.
	 The situation with Newtonian heating arises in what 
are usually termed conjugate convective flows, where the 
heat is supplied to the convective fluid through a bounding 
surface with a finite heat capacity. This configuration 
occurs in many important engineering devices, for example 
in heat exchangers where the conduction in solid tube wall 
is greatly influenced by the convection in the fluid flowing 
over it. This configuration also occurs for conjugate heat 
transfer around fins where the conduction within the fin 
and the convection in the fluid surrounding it must be 
simultaneously analyzed in order to obtain the vital design 
information and also in convection flows set up when the 
bounding surfaces absorb heat by solar radiation. 
	 The aim of this study was to investigate the problem 
of stagnation point flow over a stretching sheet with 
Newtonian heating (NH). The governing nonlinear 
partial differential equations are first transformed into a 
system of ordinary differential equations by a similarity 
transformation, before being solved numerically using 
the shooting method. To the best of our knowledge this 
problem has not been considered before, so that the 
reported results are new.

MATHEMATICAL FORMULATION

Consider a steady two-dimensional stagnation-point 
flow over a stretching/shrinking plate immersed in an 
incompressible viscous fluid of ambient temperature, T∞. It 
is assumed that the external velocity ue(x) and the stretching 
velocity uw(x) are of the forms ue(x) = ax  and uw(x) =bx 
where a and b are constants. It is further assumed that the 
plate is subjected to a Newtonian heating proposed by 
Merkin (1994). The boundary layer equations are:

	 	 (1)
								      

	 	 (2)
			   ,					   

	 	 (3)

subject to the boundary conditions:

	 u = uw(x),    v = 0,     = –hsT    at y = 0 

	 u = ue(x),    T → T∞    as	 y → ∞,	  (4)

where u and v are the velocity components along the x and 
y directions, respectively. Further, T is the fluid temperature 
in the boundary layer, ν is the kinematic viscosity, α is the 
thermal diffusivity and hs is the heat transfer coefficient.
	 We introduce now the following similarity variables 
(Salleh et al. 2010):

	 η = y,	  ψ = (av)½ xf(n),	 θ(η) = 	
 
(5)

where ψ is the stream function defined as u =  and 

v =  which identically satisfies Equation (1). 

Thus, we have: 

	 u = axf́(η),	 v = –(av)½f (η),	  (6)

where prime denotes differentiation with respect to η. 
Substituting (5) and (6) into (2) and (3), we obtain the 
following nonlinear ordinary differential equations:
								      
	 	 (7)

	 θ˝ + fθ́ = 0,	 (8)

where Pr =  is the Prandtl number. The boundary 

conditions (4) become:

	 f(0) = 0,	 f́(0) = ε,      θ́(0) = –γ(1 + θ(0))	 (9)

	 f́(η) → 1,     θ(η) → 0      as   η → ∞,	 (10)

where  ε =  is the stretching parameter. Further, γ = hs

 is the conjugate parameter for Newtonian heating. It 

is noticed that γ = 0 is for the insulated plate and γ → ∞ is 
when the surface temperature remains constant. The physical 
quantities of interest are the skin friction coefficient Cf and 
the local Nusselt number Nux which are given by:

	 Cf = ,	 Nux = ,		  (11)

where ρ is the fluid density. The surface shear stress τw and 
the surface heat flux qw are given by: 

	 τw = μ ,	 qw = –k ,	 (12)

with μ = ρv and k being the dynamic viscosity and the 
thermal conductivity, respectively. Using the similarity 
variables in (5) give:
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	        	 (13)

where Rex =  is the local Reynolds number and Nux is 
the local Nusselt number.

RESULTS AND DISCUSSION

Equations (7) and (8) subject to the boundary conditions 
(9) and (10) were solved numerically using the shooting 
method with three parameters considered, namely the 
Prandtl number Pr, the conjugate parameter γ and the 
stretching parameter ε. In order to validate the efficiency 
of the method used, the comparison of the values of the 
surface temperature θ(0) and heat transfer coefficient 
–θ́(0) has been made. Due to the decoupled boundary 
layer (7) and (8), for ε = 0, it is found that there is a unique 
value of the skin friction coefficient, f˝(0) = 1.23258766, 
which is in very good comparison with the classical value 
f˝(0) = 1.232588 by Hiemenz (1911). Table 1 presents the 
comparison between the present results with the previously 
reported results by Salleh (2011) for various values of the 
Prandtl number Pr when γ = 1 and ε = 0. Also, it is found 
that they are in good agreement. 

shows the variation of the surface temperature θ(0)  with 
conjugate parameter γ when ε = 1 and Pr = 5. Different 
from the case illustrated in Figures 1 and 2, to get a 
physically acceptable solution, the conjugate parameter 
γ must be less than or equal to a critical value, say γc i.e. 
γ ≤ γc. It can be seen from this figure that θ(0) becomes 
large (unbounded) as γ approaches the critical value, γc ≅ 
1.7808.
	 Figure 4 presents the temperature profiles for various 
values of Pr. It is found that as Pr increases, the temperature 
in the boundary layer decreases and the thermal boundary 
layer thickness also decreases. This is because for small 
values of the Prandtl number, the fluid is highly thermal 
conductive. Physically, if Pr increases, the thermal 
diffusivity decreases and these phenomena lead to the 
decreasing of energy ability that reduces the thermal 

TABLE 1. Comparison between the present solution of (7) and 
(8) with previously published results when γ = 1 and ε = 0

Pr
Salleh (2011) Present

θ(0) –θ́(0) θ(0) –θ́(0)
5 23.0042 24.0042 23.0239 24.0239
7 5.6872 6.6872 5.6062 6.6062
10 2.9226 3.9226 2.9516 3.9516
100 0.6866 1.6866 0.5034 1.5034
1000 0.2593 1.2593 0.1809 1.1809

TABLE 2. Values of θ(0) and –θ́(0) from (7) and (8) for various 
values of ε when γ = 1 and Pr = 5

ε θ(0) –θ́(0)
0 23.0239 24.0239
2 0.7442 1.7442
4 0.4533 1.4533
5 0.3900 1.3900
10 0.2505 1.2505
100 0.0681 1.0681
1000 0.0206 1.0206

	 Tables 2 and 3 present the values of θ(0) and  for 
various values of ε when γ = 1 and Pr = 5, and various 
values of Pr when γ = 1 and ε = 1, respectively. It is noticed 
that as ε or Pr increases, the values of θ(0) and –θ́(0) 
decrease. Table 4 presents the values of θ(0) and –θ́(0) 
for various values of γ when Pr = 5 and ε = 1. It is found 
that the values of θ(0) and –θ(0) increase as γ increases.
	 Figure 1 illustrates the variation of the surface 
temperature θ(0) with ε when γ = 1 and Pr = 5. To get a 
physically acceptable solution, ε must be greater than or 
equal to a critical value, say εc, i.e. ε ≥ εc. It can be seen 
from this figure that θ(0) becomes large (unbounded) as 
ε approaches the critical value εc = –0.0480. Figure 2 
shows the variation of the surface temperature θ(0) with 
Prandtl number Pr, when γ = 1 and ε = 1. Also, to get a 
physically acceptable solution, Pr must be greater than or 
equal to a critical value, say Pr c  i.e. Pr ≥ Pr c . It can be 
seen from this figure that θ(0) becomes large (unbounded) 
as Pr approaches the critical value, Pr c ≅ 1.5740. Figure 3 

TABLE 3. Values of θ(0) and –θ́(0) from  (7) and (8) for 
various values of Pr when γ = 1 and ε = 1 

Pr θ(0) –θ́(0)
1.6 108.0728 109.0728
2 7.7894 8.7894
4 1.6785 2.6785
5 1.2753 2.2753
7 0.9001 1.9001
10 0.6565 1.6565
100 0.1433 1.1433
1000 0.0413 1.0413

TABLE 4. Values of θ(0)  and –θ́(0) from (7) and (8) for 
various values of γ  when Pr = 5 and ε = 1

γ θ(0) –θ́(0)
1 1.2753 2.2753

1.2 2.0544 3.6653
1.4 3.6447 6.5026
1.5 5.2794 9.4191
1.6 8.6898 15.5034
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boundary layer. The temperature profiles with various 
values of ε are presented in Figure 5 and it is found again 
that as ε increases, the temperature decreases, and the 
thermal boundary layer thickness also decreases, similar 
to Figure 4. 
	 Lastly, the temperature profiles presented in Figure 
6 show that when the value of the conjugate parameter γ  
decreases it is found that the temperature also decreases, 

contrary to the temperature profiles with various values of 
Pr and ε in Figures 4 and 5.

CONCLUSION

In this paper we have theoretically and numerically 
studied the problem of stagnation point flow over a 
stretching sheet with Newtonian heating condition. We 

FIGURE 1. Variation of the surface temperature θ(0) with 
ε when γ = 1 and Pr ≅ 5 

FIGURE 2. Variation of the surface temperature θ(0 with Prandtl number  
Pr when γ = 1 and ε = 1
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FIGURE 3. Variation of the surface temperature θ(0) with conjugate 
parameter γ when ε = 1 and Pr ≅ 5

FIGURE 4. Temperature profiles θ(η) for various values 
of Pr when γ = 1 and ε = 1

can conclude that, to get a physically acceptable solution; 
Pr must be greater than or equal to Pr c (critical value 
of Pr) depending on γ  and ε, ε must be greater than or 
equal to εc (critical value of  ε) depending on γ and Pr 
and γ must be less than or equal to γc (critical value of 
γ) depending on ε and Pr.
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FIGURE 5. Temperature profiles θ(η) for various values 
of ε when γ = 1 and Pr = 5

FIGURE 6. Temperature profiles θ(η) for various values 
of γ when ε = 1 and Pr = 5 
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